
2 Project Plan

2.1 Project Management/Tracking Procedures

2.1.1 Management Style and Justification

Being completely a software development endeavour, this project’s goal is to create a
functioning and stable web tool. It is best suited to the agile management style because it will
allow for stable and tested development that can have requirements fulfilled and improved upon
without the risk of excessive planning or scope creep.

The project management style that the team has adopted is an agile project management flow
style. This is due to a variety of reasons, including: our group's ability and knowledge to
effectively and efficiently create software with this type of workflow, members ability to take lead
in time management tasks toward development, and the general approach towards software
development that involves iterable improvement.

2.1.2 Progress Tracking and Management Tools

For this project, our team will make use of a number of tools and are all documented as follows.

Tools regarding produced elements: first, GitLab will be used for team collaboration in producing
stable software, as well as document progress and tasks related to the software development of
the project. Second, Google Drive will be used for other produced materials - primarily along
the lines of documents and presentations.

Time scheduling and management devices: first, a Google Calendar will be used to plan out all
meetings and due dates not related to code development. Second, a project Gantt chart will be
created and utilized to properly manage all project deliverables and software based milestones.

As for communication methods: first, a structured Discord server will be used for immediate
communication between team members, teaching assistant (TA) Jacob Conn, and Professor
Mathew Wymore. Second, project group email (through school email) will be used for
communication to other parties such as: Alliant Energy representatives, Iowa State University’s
(ISU’s) Engineering Technology Support (ETS), ISU’s Electronics and Technology Group (ETG),
and ISU’s Electric Power Research Center (EPRC). Lastly, a Webex meeting room will be
established for any meetings that the project team will be hosting.

1

2.2 Task Decomposition
Basic Task Decomposition with numerous subtasks per broad realized task listed below with
expected dependencies and clear numbering system for this project.

1. Project Planning & Defining
1.1. Team dynamic planning

1.1.1. Begin team communication
1.1.2. Setup primary communication channels between team members and

advisors (TA Jacob Conn, and Professor Mathew Wymore)
1.1.3. Setup primary communication channels with all other connected parties

(Alliant Energy, ETS, ETG, EPRC)
[Dependent on 1.1.2]

1.1.4. Assign leadership roles among team members
[Dependent on 1.1.2]

1.2. Develop Requirements
1.2.1. Meet with professor Mat Wymore
1.2.2. Meet with client: Alliant Energy

[Dependent on 1.2.1]
1.2.3. Develop requirements documentation

[Dependent on 1.2.1, 1.2.2]
1.2.4. Determine engineering standards to follow in software development for

this project
[Dependent on 1.2.3]

1.3. Project Plan Instantiation
1.3.1. Documentation setup
1.3.2. Document breakdown team meeting

[Dependent on 1.3.1]
1.3.3. Finalize original Project Plan document - living document for when the

need for improvements, or alterations
[Dependent on 1.3.1, 1.3.2]

1.4. Software stack planning
1.4.1. Determine specific software stack
1.4.2. Get familiar with tech stack - Typescript React and Go languages

[Dependent on 1.4.1]
1.4.2.1. Perform individual practice to familiarize members with unique

syntax
1.4.3. Create basic proof of concept for general functionality plans

1.4.3.1. Sending information from back to front for image generation
1.5. Project Merge and Pull Request (PR) Protocol

1.5.1. Team initialization of the preliminary process of getting new code
accepted
[Dependent on 1.3.3]

1.5.2. Limits on number of team members approval for a single PR
[Dependent on 1.5.1]

2

1.6. Continuous Documentation Upkeep / Technical Writing
1.6.1. Requirements Document changes when goals change

[Dependent on 1.2]
1.6.2. Project Plan and Gantt Chart updating

[Dependent on 1.3]
1.6.3. Software documentation as newly accepted PR’s occur

[Dependent on 1.5]
2. DevOps & Tech Setup

[Dependent on 1.4]
2.1. Initialize project website
2.2. Set up CI/CD (Continuous Integration/Continuous Deployment) pipeline

2.2.1. Choosing the technologies that best integrate with our software.
2.2.2. Implementing the chosen technologies and verifying they will continue to

work for the 10 rated years of project lifetime.
2.2.3. Testing the chosen technologies to ensure they deliver correct results.

2.3. Set up deployment environments
[Dependent on 2.2]

2.3.1. Testing the chosen technologies on the deployment servers to ensure that
deployments go smoothly

2.3.2. Testing the technologies to ensure they will continue to operate in the
deployment environments even after host and software updates.

2.4. Set up individual team member work environment
[Dependent on 1.4]

3. Software Design & Functional Design Verification
[Dependent on 1.2]
3.1. Create User Interface (UI) Mock-Ups

[Dependent on 1.2]
3.2. User Experience (UX) testing

[Dependent on 3.1]
3.3. Final design verification with clients and managing professor

[Dependent on 3.2]
4. Redesign Algorithm

4.1. Go through mathematical processes to verify effectiveness of current algorithm
4.2. Redesign to work from the inside out of the duct

[Dependent on 4.1]
4.3. Convert to a compilable programming language for speed purposes

[Dependent on 4.2]
4.4. Prove mathematical algorithm - stretch goal

[Dependent on 4.3]
5. Setup Data Tables

5.1. Render
5.1.1. Id
5.1.2. List of Cables
5.1.3. List of Cable positions
5.1.4. Creation Date

3

5.2. Cable
5.2.1. Id
5.2.2. Label
5.2.3. Color? Arbitrary for display purposes
5.2.4. Diameter

6. Backend Construction
[Dependent on 2.]
6.1. Implement HTTP requests

6.1.1. Insert, delete, and read - no need for update
6.2. Convert/manage algorithmic results to transferable format

[Dependent on 4.3]
6.2.1. Send format to frontend to be drawn
6.2.2. Send results to specified email (if requested)

6.3. Configure web server to load balance/distribute requests to different
microservices

6.3.1. Choose web server, the choice will motivate a lot of API design choices
6.3.2. Install and enable on the server provided by ISU

[Dependent on 2.]
7. UI Construction

[Dependent on 3.]
7.1. Input desired duct and cable specifications that will be run through the algorithm

[Dependent on 6.2]
7.2. Receive backend results and convert to graph drawing/expected output

[Dependent on 6.2]
7.3. Include EPRC required branding

7.3.1. Communicate with Professor Mathew Wymore and EPRC about attaining
necessary branding for the website

8. Integration Testing and Unit Testing
8.1. Unit testing being a part of team PR protocol will occur with continuous software

development
[Dependent on 1.5]

8.2. Integration testing of software produced at program finalization stages
[Dependent on 4.0, 6.0, 7.0]

9. UAT & Deployment
9.1. Internal acceptance testing

[Dependent on 8.]
9.2. Demo and testing with clients

[Dependent on 9.1]
9.2.1. Demo with Professor Wymore
9.2.2. Demo with Alliant

9.3. Final production deployment
[Dependent on 9.3]

4

Task Decomposition primary task enumeration and summary: 1.0 Project Planning and
Defining, 2.0 DevOps and Technology Setup, 3.0 Software Design and Functional Design
Verification, 4.0 Redesign Algorithm, 5.0 Data Tables Setup, 6.0 Backend Construction, 7.0
User Interface Construction, 8.0 Integration Testing and Unit Testing, 9.0 User Acceptance
Testing and Deployment.

Task Decomposition version number: 0.1.0

2.3 Project Proposed Milestones, Metrics, and Evaluation
Criteria
Milestones

1. Protocols, Technologies, and Requirements have a team consensus.
2. Git is configured with CI/CD and individual work environments are set up.
3. Mockups are verified by client, professor, and TA.
4. Algorithm must produce the correct result within 20 seconds.
5. Frontend and backend can successfully communicate.
6. Application must pass all unit tests and produce expected results.
7. Application must be deployed on the Iowa State server.

Evaluation

For each task that will be represented as an issue in Git, they will be assigned an effort value of
the expected amount of time required to complete each issue. In our Git Kanban style board, we
can visually see how many issues for each milestone have been completed, and how many are
left. This allows us to not only see how close we are to a milestone, but also to track individual
progress.

2.4 Project Timeline/Schedule
The following is the teams’ original Gantt chart. It includes: tasks, substasks, who each task is
assigned to, the current tasks’ progress, the start date, and the end date. The start date is the
current recommended day in which the team or those assigned to the specific tasks should
begin based on dependencies and due dates. Some tasks are given ample time to demonstrate
their complexity, and expected time requirements.

There are a few tasks that are ongoing throughout most of the project. These tasks are
continuous documentation (technical documents maintenance, and software documentation),
and the continuous unit testing of code as software for both proof of concept and final project
are created.

5

Each section on the Gantt chart is the major task derived from 2.2 Task Decomposition with the
various subtasks making up each different colored section. All known deliverables are therefore
included in the chart in the form of tasks. Tasks that are associated are shown to be so in either
being in the same major task section or through the excel gantt chart calculation of not having
start days before ending dates of dependent tasks.

All date information is shown at the top of the excel sheet, which has all tasks on a single gantt
chart, in relation to the project with a start date of August 30, 2021 (Week 1).

This zoomed out section of the project gantt chart is task 1.0 Project Planning & Defining
(shown above). This section continues to span the weekly schedule as it includes the upkeep of
various documents relevant to the project. It began on week one of the planner and continues
from there with a variety of tasks that can be seen more closely in 2.2 Task Decomposition.

6

Task 2.0 DevOps & Tech. Setup (shown above), is the early planning, staging, and setup of
technology and CI/CD pipelining.

Task 3.0 Software Design & Functional Design Verification (shown above), will involve a few
tasks dependent on each other in some form that will allow for the planning for the eventual UI
of the final software project.

7

For task 4.0 Redesign Algorithm, is a math focused major task that will need to occur early on in
order to properly ensure the current Python code can be verified, and converted to fit the
projects’ needs.

Task 5.0 Data Tables Setup (shown above), is a short major task that will be done in order to
ensure all possible data points for entry are stored and available to the user input.

8

Task 6.0 Backend Construction (shown above), involves the long development of all the
backend components to this software project. It starts after final design approval, and proof of
concept programming.

Task 7.0 UI Construction (shown above), will begin at a later point after proof of concept
software has been constructed, as well as, general design given approval.

As for task 8.0 Integration Testing and Unit Testing (shown above), what is shown here is the
last section of it with the ending of the unit testing at the end of new code production followed by
the start and completion of integration testing.

9

The last major task, 9.0 UAT & Deployment, occurs at the end of the project with final testing
and software fixes to be completed prior to final deployment. As testing will be occurring
throughout the project ideally this will prove very efficient.

More detailed documentation of the gantt chart is in the gantt chart excel file.

2.5 Risks And Risk Management/Mitigation
Each major task that was identified in 2.2 Task Decomposition section is broken down
individually for what risks could potentially occur along with an evaluation on the likelihood, and
what the plan to mitigate these potential risks during the project development process. A table
reference is listed below for each individual evaluation type. As this is an Agile project, risks
and risk mitigation will be associated with each sprint.

1. Project Planning & Defining
- Misunderstanding requirements

- Unlikely, Catastrophic: Not properly understanding what our client is asking could
mean building an application that is not useful or does not fit their needs. We will
need to meet (and have been meeting) with our client to fully understand what
they are looking for and how we can deliver an app that fits their needs.

2. DevOps & Tech set up
- Mismanagement of setup

- Possible, Negligible: If something in our virtual machine setup ends up being
wrong, there is little hassle in getting the error fixed or configuration changed to
resolve our problem.

3. Software Design & Functional Design Verification
- Architectural problems

- Rare, moderate/major: A major flaw with our architecture could result in problems
throughout our project, so it will be paramount to select an architecture that will fit
our needs before starting development

- Wireframe issues

10

- Unlikely, negligible: If our wireframes for design verification are not to the spec
our client specifies, we will simply need to change them to fit requirements before
implementing their design in the full application.

4. Redesign Algorithm
- Mathematical Error

- Rare, Major/catastrophic: An error in the calculations regarding the cable-fitting
algorithm would result in delivery of incorrect results and the plethora of problems
that delivering incorrect calculations to a client would entail.

- Mitigation: Checking our algorithm results against the original application and
against mathematically sound equivalent theorems.

- Optimization
- Likely, negligible: A low-consequence risk with redesigning an algorithm is that it

is not as efficient or optimized as it possibly could be, so there could be a chance
to reduce latency with a highly-optimized algorithm.

5. Setup Data Tables
- Incorrect Table configuration

- Unlikely, Minor: If a table for storing results or information is configured
incorrectly, then a mitigation would be making a change in the database to
accurately reflect our data, though going unchecked this could result in the
mishandling of data storage.

6. Backend Construction
- Improper data treatment and storage

- Unlikely, Moderate: The worst outcome that can happen with a poorly built
backend is returning incorrect data, which can mean inaccurate results and
possibly a mischarge to a client. Ensuring that our backend returns the correct
information and in a timely manner will be important as we build the application.

7. UI Construction
- Confusing UI

- Rare, Minor/moderate: If users cannot understand how to use the app, they will
not be able to get the information they want out of it. It will be important for us to
perform user acceptance testing so we can gauge how intuitive and easy to
understand our application front end is.

- Dysfunctional UI
- Rare, Minor: If the UI is so poorly built that it either does not work or cannot give

results, that would be frustrating as the user. A dysfunctional UI is hard to miss
when using proper testing techniques, so this should be a very rare risk to occur.

8. Integration Testing and Unit Testing
- Lack of comprehensive tests

- Unlikely, Major: With incomplete testing, there is a chance that edge cases in
how our app is used could go unnoticed which would be frustrating for users that
encounter them. Or edge case calculations could turn out wrong, and missing
them would mean the possibility of incorrect charging of clients for bore sizing.

- We will have to ensure that our testing methodology is thorough and we know the
results we are looking for.

11

- Incorrect testing validation
- Unlikely, Major: If tests run on the application are configured incorrectly or give

false positives/negatives, there is a chance that an error would go unnoticed.
- We will have to ensure that our testing methodology is thorough and we know the

results we are looking for.
9. UAT & Deployment

- Inaccurate Results
- Rare, Moderate: Should our user testing come back inconclusive or yield

inaccurate results, then we would have a harder time improving the usability of
the application should there be something substantially wrong with the design.

Consequence ->
Likelihood \/

Negligible:
1

Minor:
2

Moderate:
3

Major:
4

Catastrophic:
5

Almost Certain: 5 5, Moderate 10, High 15, Extreme 20, Extreme 25, Extreme

Likely: 4 4, Moderate 8, High 12, High 16, Extreme 20, Extreme

Possible: 3 3, Low 6, Moderate 9, High 12, High 15, Extreme

Unlikely: 2 2, Low 4, Moderate 6, Moderate 8, High 10, High

Rare: 1 1, Low 2, Low 3, Low 4, Moderate 5, Moderate

2.6 Personnel Effort Requirements
We have a seven-person team. As a result, the tasks that require individual effort of every team
(such as meetings and validations) will be scaled up accordingly to reflect total personnel effort.
These evaluations are listed in table form with the task name, current estimated hours required,
and a brief explanation of resultant estimation.

Task Name Est. hrs Explanation

Begin Team Communication 3.5 Half-hour each to set up communication channels

Set up communication with
advisors

7 Half-hour long meeting each to meet with Jacob
Conn and Mathew Wymore

Set up communication with
external stakeholders

17 2-hour long meetings (total) to meet with external
stakeholders. 3 hours for email communications

12

Assign leadership roles 7 1 hour long team meeting

Requirements - Wymore
meeting

7 2 x half hour long meetings

Requirements - Alliant
Energy

14 2 x hour long meetings

Requirements Document 15 1 hour team meeting + 1 hour individual work
time + time to proof-read and submit assignment

Engineering Standards 14 Half hour team meeting + half hour individual
work

Project Plan Set Up 14 2 hour individual work time

Project Plan Task Breakdown 7 1 hour long meeting

Finalize Project Plan 10.5 1 hour individual work and half hour meeting to
finalize the document

Determine Software Stack 21 1 hour individual work and 2 hour team meeting

Get Familiar with Tech Stack 60 8 hour for each person, with some additional time

Tech Stack PoC 40 Basic stack set up, should be fairly simple

Project PR Standards
Meeting

14 2 hour long meeting

Continuous Documentation
and Technical Writing
Up-keep

175 1 hour per-person for 25 weeks

Initialize Project Website 10 Infrastructure is already set up, so the team just
need to construct the html pages

CI/CD Pipeline Set Up 15 Creating initial pipelines and integrate with Gitlab,
some learning may be required

Set Up Deployment
Environment

20 May involve meetings with IT services, set up
VM/server

Set Up Individual Work
Environment

28 4 hours per-person, since some
learning/experimenting may be required

Create UI Mock-Ups 80 Includes time to learn mock-up tools and creating
iterations of mock-ups

UX Testing 20 Include time to construct tests, meeting times with
stakeholders and compiling data

13

UI Mock-Up Verification 14 2 hour long meeting with clients

Verify Current Algorithm 15 Time for getting familiar with the tool and
extensive testing

Redesign Algorithm 40 Includes time for development and testing

Convert Programming
Languages

15 Includes time for development and testing in new
language

Mathematical Proof of
Algorithm

40 Some research and information seeking may be
required

Set Up DataBase 15 Infrastructure should be already set up

Create Data Table - Render 4 Includes time to test created table

Create Data Table - Cable 4 Includes time to test created table

Backend Construction -
HTTP

100 Includes time to develop and test all functions

Backend Construction -
Transferable format

50 Some Prototyping may be required

UI Construction - Inputs 50 Some Prototyping may be required

UI Construction - Visualize
results

100 Prototyping and some research into visualization
tools required

UI Construction - EPRC
Branding

40 Adding styles/icons to the constructed software
shouldn’t take too long

Unit Tests 200 Should be done alongside development,
estimated 1 hours per week per person

Integration Testing 100 Includes time for extensive test and making any
fixes/adjustments

Internal Acceptance Testing
(IAT)

14 2 hour meeting to review all aspects of the
application

14

Demo and User Acceptance
Testing (UAT)

14 2 hour meeting to review all aspects of the
application

Final Production
Development

60 Includes time to deploy and fix any last minute
issues. Includes some time for monitoring after
deployment

For this current estimation, this would evaluate to 1,474 hours that would be split evenly
between the team of seven people. This would make it about 210.5 hours per team member
over the course of two regular length school semesters. These numbers are subject to
revaluation as the project progresses.

2.7 Other Resource Requirements
As stated previously, this project is completely software based, and was not provided a budget
making the total amount of resources small to begin with. Work hours from the team and its
partners will be required for the project's completion, but can be found in section 2.6 Personnel
Effort Requirements for the team directly.

Aside from these resources, the only other resource requirement for this project is an Iowa State
University server that will be hosting the web tool which will be negotiated and set up in
conjunction with ETS.

15

